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Abstract—Simultaneous wireless information and power trans-
fer (SWIPT)-enabled millimeter-wave (mmWave) network is one
of the most effective solutions to solve the problem of high
power consumption at wireless devices caused by high data
rate applications. In this paper, we propose a SWIPT-enabled
mmWave network and investigate the influence of mmWave
propagation features on rate-energy (R-E) tradeoff of SWIPT
system. In addition, an optimal power splitting (PS) policy is
proposed to minimize the duration until battery exhausting,
communication interruption and information loss occur. Finally,
the proposed PS policy is modeled by Markov decision process
(MDP) problem and realized by reinforcement learning (RL)
algorithm. Simulation results show that the proposed RL-based
PS policy can achieve higher battery energy level and stable data
rate which can keep a good QoS of the whole SWIPT-enabled
mmWave network.

Index Terms—mmWave network, SWIPT, rate-energy tradeoff,
power splitting, reinforcement learning, physical layer security.

I. INTRODUCTION

With the evolution of wireless communication technology,
the improvement of data rate will cause more energy consump-
tion and greatly shorten the lifetime of battery in wireless
devices. As a promising solution, wireless power transfer
(WPT) has recently gained prominence due to its flexible
application scenarios. WPT is usually implemented by electro-
magnetic induction (near-field) and electromagnetic radiation
(far-field) [1]. Compared with wired charging, near-field WPT
can not solve the energy shortage of battery and reduce the
inconvenience of charging [2]. Far-field WPT, by contrast,
is the technology in line with the concept of real wireless
charging. SWIPT is the combination of information transfer
and far-field WPT. It can effectively ease the contradiction
between high data rate and long lifetime of battery-powered
devices in the fifth generation (5G) wireless communication
system.

The mmWave has been a promising technology in 5G
wireless communication. mmWave frequencies range from
30 to 300 GHz, and its wavelength is in the order of 1
to 10 mm [3]. The battery powered users with ultra high
transmission rate need more energy endorsement. SWIPT-
enabled mmWave network is an effective solution to the

problem of high power consumption caused by high data
rate applications, such as unmanned aerial vehicle (UAV)
[4] and Internet of things (IoT) [5]. Nevertheless, a large
number of measurements show that the mmWave with the
narrow beamwidth has good directivity, weak diffraction, less
penetration ability as well as high propagation loss. Due to
these unique characteristics of mmWave, line-of-sight (LOS)
transmission is the main propagation mode. But mmWave link
will fluctuate significantly in cases of users with high mobility
so that the quality of service (QoS) will sharply cast down.
In SWIPT-enabled mmWave network, we have to find a good
method to improve QoS for mobile users which are suffering
from frequent mmWave link fluctuations.

Thus, the resource allocation policy in SWIPT-enabled
mmWave network is very vital. The mmWave radio frequency
(RF) resource is limited. If more RF resource is used for
information decoding to ensure the communication quality,
the battery will run out due to insufficient energy supply. Con-
versely, the communication quality will be hardly guaranteed
if more RF resource used for battery charging. Therefore, the
tradeoff between transmission rate and energy level, namely
R-E tradeoff, becomes a significant factor to evaluate the
performance of SWIPT system.

Previous works on R-E tradeoff based on some classic re-
ceiver architectures, e.g., antenna switching (AS) architecture
[6], time switching (TS) architecture and power splitting (PS)
architecture, have been studied in [7]–[11]. In [7], a jointly
optimization of power allocation and PS method to solve
the tradeoff between information rate and harvested energy
of SWIPT in mmWave massive MIMO-NOMA system is
proposed. In order to achieve a higher spectrum and energy
efficiency in the system, the optimal policy is derived to
maximize the minimum harvested energy of the users. The
proposed method can achieve higher spectrum and energy
efficiency. To improve the system throughput in a three-
node SWIPT system, paper [9] optimizes TS architecture by
balancing the time duration between WPT phase and wireless
communication phase to achieve the maximum throughput.
In [11], a joint optimization of transmit power, time slot
allocation, subcarrier as well as number of user antennas is
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proposed, where the imperfect channel state information (CSI)
is also considered. To the best of our knowledge, the most of
the literatures on R-E tradeoff in SWIPT system only focus
on the optimization of allocation algorithm in a fixed time slot
when the transmission power is constant and the variation of
the transmission power in the real transmission environment
is fully ignored.

The contribution of this paper is summarized as follows.

1) A SWIPT-enabled mmWave network is proposed and
the influence of mmWave propagation features on R-E
tradeoff of SWIPT system is investigated.

2) An optimal PS policy is designed to minimize the
duration until energy runs out, and communication in-
terruption and information loss occur. As the received
mmWave signal is unstable due to the mmWave propa-
gation features mentioned above, the proposed PS policy
is more practical in this paper and the whole moving
process is considered when mobile users move in the
mmWave network.

3) The proposed PS policy is modeled by MDP problem
and an optimization method based on reinforcement
learning is implemented.

The remainder of the paper is organized as follows. A more
realistic system model of SWIPT-enabled mmWave network
in LOS situation with PS architecture is introduced in Section
II. An adaptive PS policy considering the frequent mmWave
link fluctuations is proposed in Section III. In Section IV,
an adaptive policy is realized by RL algorithm. In Section
V, some intensive simulations are provided to evaluate the
performance of the proposed policy. Finally, the paper is
concluded in Section VI.

II. SYSTEM MODEL

We consider a SWIPT-enabled mmWave network as shown
in Fig. 1. The network is composed of one mmWave base sta-
tion (BS) and N mobile users M = {M1 . . . ,Mn, . . . ,MN}
with rechargeable batteries. The BS is equipped with om-
nidirectional antenna and each user is equipped with single
directional antenna. The PS architecture is deployed in each
user which obtains the received instantaneous signal based on
power level, i.e., one part used for information decoding and
the other used for battery charging. To describe the fluctuations
of mmWave link, we assume the network covered by BS is
partitioned into G areas U = {U1, . . . , Ug, . . . , UG} with the
same area size. When a user moves around the network, the
time that a user stays in each area is defined as the resident
duration. Thus, we assume that the instantaneous signal power
received by each user in different areas is different, and the
power value in a specific area Ug during resident duration is
constant.

Each active Mn in the network has a specific signal power
value in the area of its resident. The signal power value of all

Fig. 1. SWIPT-enabled mmWave network with signal link strongly fluctu-
ating.

N users in the area U can be described by

P =

∥∥∥∥∥∥∥∥∥
p1,1 p1,2 · · · p1,G
p2,1

...

p2,2 · · ·
...

. . .

p2,G
...

pN,1 pN,2 · · · pN,G

∥∥∥∥∥∥∥∥∥ , (1)

where the signal power for each user can be derived from
the block fading AWGN channel model of mmWave. For a
specific Mn, it can be only located at one area Ug at a certain
time which means it only has one non-zero value of each row
vector. There are significant fluctuations of mmWave link but
the case of pn,g = 0 is not going to occur. Thus, P is a matrix
with the number of N non-zero values.

Similarly, the resident duration of all N users in the area U
is defined as

T =

∥∥∥∥∥∥∥∥∥
t1,1 t1,2 · · · t1,G
t2,1

...

t2,2 · · ·
...

. . .

t2,G
...

tN,1 tN,2 · · · tN,G

∥∥∥∥∥∥∥∥∥ , (2)

where T is also a matrix with the number of N non-zero
values. The resident duration is varying with the movement
of each user in different areas. The resident duration can be
described by tn,g = Xwn,g , where wn,g is the total number
of frames of the specific duration tn,g , and X is the time slot
with a fixed value that each frame contains.

A. Power Splitter

When Mn moves from previous area to the next one at the
beginning of each resident duration, Mn receives the signal
power with the value of pn,g . Then, the power splitter gen-
erates a specific PS parameter which is used for RF resource
allocation. The matrix B to describe the PS parameters for all
the N users in G areas is defined as

B =

∥∥∥∥∥∥∥∥∥
β1,1 β1,2 · · · β1,G

β2,1

...

β2,2 · · ·
...

. . .

β2,G

...
βN,1 βN,2 · · · βN,G

∥∥∥∥∥∥∥∥∥ , (3)
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where βn,g is the distribution ratio of the received signal power
with the range of (0, 1). With AWGN channel, the data rate
of Mn in Ug can be estimated by

r (βn,g) = W log

(
1 +

(1− βn,g) pn,g
N

)
, (4)

where W is the bandwidth of the signal and N is the
background noise. The remaining signal power flows into the
battery which is estimated by

e (βn,g) = αβn,gpn,g, (5)

where 0 < α ≤ 1 denotes the power conversion efficiency.

B. Transmission Queue Model

A queue model of the battery and cache-aided decoder for
each user is described as follows. The battery is assumed in the
form of an energy queue. The battery charging rate e (βn,g)
of Mn in area Ug can be derived from (5) and the energy
consuming rate of Mn is defined as cn,g . The battery state
η (βn,g) denotes the energy level of battery at the beginning
of each resident duration node when Mn moves into Ug . The
battery size is not our concern. So the iterative formula for
battery state is described by

η (βn,g′) = max {η (βn,g)− cn,gtn,g, 0}+ e (βn,g) tn,g. (6)

The structure of the decoder cache is similar to the battery.
It is in the form of a data queue. The cache size is a fixed value
D. The signal resource used for information decoding is firstly
stored briefly in the cache. The data arrival rate r (βn,g) can
be derived from (4) and the required data rate for decoding is
defined as dn,g . The cache state π (βn,g) denotes the amount
of data stored in the cache at the beginning of each resident
duration when Mn moves into Ug . So the iterative formula for
decoder state is described by

π (βn,g′) = min

{
max {π (βn,g)− dn,gtn,g, 0}+
r (βn,g) tn,g, D

}
. (7)

III. PROBLEM FORMULATION

The fundamental question is to find an optimal resource
allocation policy to maintain a good QoS of moving users who
are suffering from frequent mmWave link fluctuations. The
PS parameter βn,g has a significant impact on QoS because
improper allocation policy leads to three conditions of battery
exhausting, communication interruption and information loss.
In this section, we propose the quantitative indicators based
on the changeable environment for the above three conditions.

We define the bad condition cost w (βn,g) as the normalized
additional duration required when energy runs out, communi-
cation interruption or information loss of user in the whole
area U occur. w (βn,g) = 0 denotes none of the energy,
communication interruption or information loss. The three
aspects are described as follows:

1) Battery exhausting: If the power consuming rate of Mn

is lower than the charging rate cn,g < e (βn,g), the QoS of
Mn in Ug is guaranteed and w (βn,g) = 0 (the condition of
energy overflowing in battery is not our concern). Conversely,
if cn,g > e (βn,g), the energy flowing into the battery will be
gradually consumed. In this case, the time required from the
beginning of Mn moves into Ug to the time node where the
energy is gently exhausted is given by

∆τ (βn,g) =
ηm (βn,g)

cn,g − e (βn,g)
. (8)

If the resident duration tn,g is shorter than ∆τ (βn,g), the
user will leave from Ug before the time node where the
energy is completely exhausted and the bad condition will
not occur w (βn,g) = 0. If tn,g > ∆τ (βn,g), the extra energy
which is required for user to prolong the lifetime is given
by (cn,g − e (βn,g)) (tn,g −∆τ (βn,g)). So, the bad condition
cost of battery exhausting is given by

w (βn,g) =
(cn,g − e (βn,g))

(
tn,g − η(βn,g)

cn,g−e(βn,g)

)
e (βn,g)

. (9)

2) Communication interruption: In the decoder cache of
Mn in Ug , if the speed of decoding is higher than the speed of
data arrival r (βn,g) < dn,g , the data flowing into the decoder
will be completely decoded immediately and there is no data
queue waiting to be decoded in cache during the duration
t(n, g). The duration from the beginning of Mn moving into
Ug to the time node where there is no data to be decoded in
the decoder is given by

∆τ ′ (βn,g) =
π (βn,g)

dn,g − r (βn,g)
. (10)

If resident duration tn,g is shorter than ∆τ ′ (βn,g), there is
always information to be decoded in decoder and w (βn,g) =
0. If tn,g > ∆τ ′ (βn,g), the communication interruption occurs
and the extra information data required for decoding is given
by (dn,g − r (βn,g)) (tn,g −∆τ ′ (βn,g)). So, the bad condition
cost of communication interruption is given by

w (βn,g) =
(dn,g − r (βn,g))

(
tn,g − π(βn,g)

dn,g−r(βn,g)

)
r (βn,g)

. (11)

3) Information loss: If r (βn,g) > dn,g , the arriving rate of
Mn is higher than the data decoding rate. When the decoder
cache is full of data, the data that comes later would be
abandoned. The duration from the beginning of Mn moving
into Ug to the time node where the cache is full is given by

∆τ ′′ (βn,g) =
D − π (βn,g)

r (βn,g)− dn,g
. (12)

If tn,g is shorter than ∆τ ′′ (βn,g), then w (βn,g) = 0 because
the user will leave from area Ug before the time node
where the information loss occurs. If tn,g > ∆τ ′′ (βn,g),
the abandoned information during the resident duration is
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(r (βn,g)− dn,g) (tn,g −∆τ ′′ (βn,g)). The bad condition cost
of information loss is given by

w (βn,g) =
(r (βn,g)− dn,g)

(
tn,g − D−π(βn,g)

r(βn,g)−dn,g

)
r (βn,g)

. (13)

To summarize the three aspects mentioned above, the pro-
posed PS algorithm for SWIPT-enabled mmWave network is
summarized in Algorithm 1. Summing up the above, the bad

Algorithm 1 Proposed PS algorithm for SWIPT-enabled
mmWave network

1: if cn,g > e (βn,g) then
2: Compute exhausting time ∆τ (βn,g) according to (8)

and compare it with tn,g
3: if tn,g > ∆τ (βn,g) then
4: Get w (βn,g) according to (9)
5: else
6: if dn,g > r (βn,g) then
7: Compute interruption time ∆τ ′ (βn,g) according to

(10) and compare it with tn,g
8: if tn,g < ∆τ ′ (βn,g) then
9: w (βn,g)← 0

10: else
11: Get w (βn,g) according to (11)
12: end if
13: else
14: Compute information loss time ∆τ ′′ (βn,g) accord-

ing to (12) and compare it with tn,g
15: if tn,g < ∆τ ′′ (βn,g) then
16: w (βn,g)← 0
17: else
18: Get w (βn,g) according to (13)
19: end if
20: end if
21: end if
22: else
23: Repeat step 7 to 23
24: end if

condition cost of three aspects of Mn in area Ug is described
by (14).

IV. RL-BASED ADAPTIVE PS POLICY

Our goal is to find an adaptive PS policy to minimize the
bad condition cost w∗ (βn,g) for each user during the whole
duration when they move in the network. This is a sequential
decision problem to find a proper control at each moment to
achieve a certain optimal operation effect on the whole process
of system. The problem can be described under a MDP [12]
framework. It can help the dynamic system to find an optimal
decision based on Markov process theory. The basic elements
of an MDP framework can be defined in the form of a set
{S,A, P,R}. Respectively, S is the state of the environment,
A is the action of the agent, P is the state transmission
probability and R is the reward or punishment of the action.

The RL algorithm is a promising method of MDP problem.
Q-learning is one of the computational efficient model-free
algorithm of RL. In Q-learning algorithm, some difficult
information such as the state transmission probability P is
not required. We define each user is the independent learning
agent of the Q-learning system. Each agent uses Q-learning
algorithm to learn the changeable environment and find the
optimal PS parameter for each state. In the Q-learning process,
the agent needs to take action according to the current state,
and improves the action after receiving corresponding reward.
So that the agent can make better action when in the same
state for the next time. Q-value is the most element of Q-
learning algorithm. It represents the maximum future reward
expectation for a given state and corresponding action. The
update of Q-value is given by

Q (s, a)← Q(s, a) + α
[
r + γmax

a
Q (s′, a)−Q (s, a)

]
.

(15)

A. Q-learning

To use the Q-learning algorithm, we firstly define the three
elements– the state space, the action space and the reward of
the proposed SWIPT-enabled mmWave network as follows.

1) The state space: We define that a system state transition
occurs when any user in the network moves from the area Ug

into the neighboring area U ′
g. Assume that the associated areas

of any two users do not change at the same time. Therefore,
the state time can be described by the resident duration of the
user who changes the location at this state. When a new state
occurs, both the power of the received signal power and the
resident duration change. Thus, we define the state space of
SWIPT-enabled mmWave network as

s = (Ps, Ts) ∈ S = P × T , (16)

where P = {P1, . . . , Ps, . . . , PS} and T =
{T1, . . . , Ts, . . . , TS} are the signal power and resident
duration of all S states, respectively. For a specific state s, Ps

is the signal power of all N users in the whole area U which
can be obtained according to (1). And the resident duration
of the users can be achieved according to (2).

2) The action space: When any user moves into a new area,
the system transition occurs. A new PS parameter is required
due to the changes in the received signal power and resident
duration. Therefore, the action space of the network can be
described by

a = (Bs) ∈ A = B, (17)

where B = {B1, . . . , Bs, . . . , BS} is the PS policy of all S
states. For a specific state s, Bs is the selected PS parameter
of N users in the whole G areas which can be achieved from
(3). Then, we use the greedy policy to select action for each
user in each state

βs

{
= argmax Q (s, a) , with probability 1− ε
∼ U (A) , with probability ε

(18)
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w (βn,g) =



(cn,g−e(βn,g))

(
tn,g−

η(βn,g)
cn,g−e(βn,g)

)
e(βn,g)

,
(
cn,g > e (βn,g) , tn,g > η(βn,g)

cn,g−e(βn,g)

)
(dn,g−r(βn,g))

(
tn,g−

π(βn,g)
dn,g−r(βn,g)

)
r(βn,g)

,
(
cn,g < e (βn,g) , r (βn,g) < dn,g, tn,g > π(βn,g)

dn,g−r(βn,g)

)
(r(βn,g)−dn,g)

(
tn,g−

D−π(βn,g)
r(βn,g)−dn,g

)
r(βn,g)

,
(
cn,g < e (βn,g) , r (βn,g) > dn,g, tn,g > D−π(βn,g)

r(βn,g)−dn,g

)
0, otherwise

(14)

3) Reward: Reward is a key factor that determines the
performance of Q-learning algorithm. In SWIPT-enabled
mmWave network, we define the negative value of the total
bad conditions cost of all N users as the reward which is
described by

rs = −
N∑

n=1

w (βn,g). (19)

Thus, in the cases of no energy running out, no communication
interruption and no information loss at state s, the reward is
0. In the other cases, the rewards are always negative.

4) Proposed algorithm: Algorithm 2 is the proposed Q-
learning Algorithm for SWIPT-enabled mmWave network.
After kmax iterative learning, the optimal PS policy can be
described by

β∗
s = argmaxQ∗ (s, a) . (20)

Algorithm 2 Q-learning Algorithm for SWIPT-enabled
mmWave network

1: Initialize Q(s, a) for s and a arbitrarily
2: for k = 1 to kmax do
3: Initialize s
4: while s ̸= S do
5: Select a according to (18)
6: Take action a, observe r, s′

7: Update Q (s, a) using (15)
8: Set s← s′;
9: end while

10: end for

V. SIMULATION RESULTS

The performance of the proposed PS policy of SWIPT-
enabled mmWave network is evaluated by simulations. The
parameter settings are as follows: The transmission power of
each BS is PT = 40 W ; the coverage of the network is
d = 50m. Then the received signal power can derived from
the free space transmission model. The spectrum bandwidth
W = 2 GHz; the background noise N = −134 bM/MHz;
the antennas gains are Gt = Gr = 1. To simplify the
computational model, we set G = 100 and there is one user
in the network. The user is randomly moving among these
100 areas, and we pick 15 areas of these at random as areas
through which the user is moving. The resident durations
depend on the speed of user which is randomly selected among

[1, 100]. The required decoding rate is randomly selected with
the range of [90, 120] Gbps. The consuming rate is set with the
low level of 4× 10−7 W according to the practical situation
of wireless power transfer. The size of the decoder cache is
16×109 bit, and the battery size don’t need to be considered.
The PS parameters is a set of discrete equally interval value
with the range of (0, 1). As for the Q-learning algorithm of
SWIPT-enabled mmWave network, the parameter settings are
as follows: α = 0.8, γ = 0.9, kmax = 1000, and the parameter
setting of greedy algorithm when choose action is ε = 0.5.

We focus on the communication environment of the 15
states selected in the network. Fig. 2 shows the received signal
power value and resident duration of each state. It can be found
through the change of power values that the signal received
by the user during the movement of the network fluctuate
seriously. This is due to the mmWave link fluctuations. What’s
more, in order to describe the random movement of user in
mmWave network more accurately, the 15 resident durations
of user in 15 areas also vary randomly. In the simulations, the

Fig. 2. 15 randomly selected states in mmWave network with signal link
strongly fluctuating.

user is assumed to pass through the 15 areas of the 15 states
in turn. It will experience serious signal fluctuations described
in Fig. 2. The received power and resident duration are all
the influence factors of PS allocation strategy. Fig. 3 shows
the battery states against the 15 states. It can be found that
due to the low energy consuming rate, all the PS policies of
15 states can ensure the continuous increase of battery state
during the whole movement. In the naive policies, an increase
in PS parameter β means more signal resource to be used
for the battery charging. Thus, the battery state of the naive
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Fig. 3. Battery states of the user when moving in mmWave network.

policy with β = 0.5 is the lowest and the naive policy with
β = 0.8 is the highest. It is observed that our proposed RL
based policy can reach to the highest level of the three naive
policies. Note that, the naive policy with β = 0.8 gives the
priority to energy sustainability which means eighty percent of
signal resource to be used for battery charging. Fig. 4 shows

Fig. 4. Data rate of the user when moving in mmWave network.

the data rate against 15 states, where the data rate values of
all PS policies fluctuate to some extent because the received
signals fluctuate in Fig. 2. Since the size of decoder cache is
limited and the required decoding rate is fixed, the optimal
PS policy should try to keep the values of data rate within
a small range around the required decoding rate. No matter
how the value of PS parameter β is set, the QoS cannot be
guaranteed in a series of random states, such as the three naive
policies. If β is too high, there is a risk of information loss;
if β is too low, there is a risk of communication interruption.
Our proposed RL based PS policy can find the optimal PS
policy for each state through the continuous learning of the
environment. It has the smallest fluctuation and the minimum
deviation value in each state compared with the other three
naive policies. Fig. 3 and Fig. 4 together show our proposed
PS policy not only ensures the best communication quality
but also keeps the battery state at the highest level at the same
time compared with the other three naive policies.

VI. CONCLUSION

In this paper, we focus on the design of PS policy in
SWIPT-enabled mmWave network by considering the frequent
mmWave channel fluctuations. The optimal PS policy is useful
to minimize the probability of each user suffering bad condi-
tions such as battery exhausting, communication interruption
or information loss. Moreover, the proposed PS policy is
modeled by MDP problem and realized by RL algorithm.
Compared with the naive PS policies that only consider the
advantages of one side based on fixed environment conditions,
the proposed adaptive PS policy can make decision according
to different environment conditions. A higher battery level and
stable data rate can be guaranteed when the users move in the
mmWave network. In the next step, physical layer security for
SWIPT-enabled mmWave network will be also further studied.
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