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a b s t r a c t 

Human Epithelial-2 (HEp-2) cell images play an important role for the detection of antinuclear autoanti- 

bodies (ANA) in autoimmune diseases. Segmentation is the primary step for classification, further treat- 

ment and diagnosis. However, the staining patterns and scales of HEp-2 specimen images have different 

variances, which still make segmentation quite a challenging task. To solve it, we propose a novel deeply 

supervised full convolutional network (DSFCN) for robust segmentation of different HEp-2 cell images 

dataset. DSFCN is based on a very deep network, which integrates the dense deconvolution layer (DDL) 

and hierarchical supervision structure (HS). Specifically, The DDL uses the up-sampling to restore the high 

resolution of the original input images to replace the traditional deconvolution layer, and the hierarchical 

supervision is added to capture feature information of the shallow layers. The high-resolution predic- 

tive output is obtained by capturing local and global information between layers. Without relying on the 

prior knowledge and complex post-processing, DSFCN can be effectively trained in an end-to-end man- 

ner. The proposed method is trained and tested on the I3A-2014 public dataset, and the segmentation 

result demonstrates that the performance of our model outperforms other state-of-the-art methods. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

HEp-2 cells with indirect immunofluorescence (IIF) is a

ommonly-used technique for detecting anti-nuclear anti-bodies

ANA), which can be visualized via a fluorescence microscope.

egmenting HEp-2 specimen images is indispensable due to its

mportance in daily clinical practice to improve the efficiency of

omputer-aided diagnosis and detection. However, manual analysis

rom a large number of IIF images still has the limitations (e.g.,

igh clinical experiences, time-consuming and inter-variability

mong doctors’ knowledge). As a result, the subjective results

nd inter-laboratories diversity restrict the true expression of the

eading results [1] . To address these limitations, a number of

utomatic and robust HEp-2 cell classification models have been

roposed in recent years [2–4] . In these methods, segmentation

s the first step for HEp-2 cell images classification since the
∗ Corresponding author. 
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ccurate segmentation results are beneficial for the subsequent

lassification processing [3,4] . 

Intensity thresholding is one of the most popular and prelim-

nary approaches for cell segmentation. Petra et al. proposed a

Ep-2 cell image segmentation method using Otsu by utilizing the

rst thresholding [5] . Jiang et al. proposed a novel approach based

n the framework of verification-based multi-threshold probing for

Ep-2 cell image segmentation [6] . Many studies aimed at the seg-

entation of HEp-2 cells [7,8] due to the large variances of ap-

earances among different HEp-2 cell categories. However, most

f the previous works achieved accurate segmentation for images

ontaining a certain pattern of cells while failing to achieve good

esults when different staining patterns were provided. Examples

f the staining patterns of HEp-2 specimen images are illustrated

n Fig. 1 . However, there is still room for robustness improvement

f the HEp-2 specimen images segmentation method. 

To improve the segmentation performance of HEp-2 specimen

mages, a method with an impressive feature is highly desirable.

n recent years, the deep convolutional neural networks (CNNs)

ave attracted wide attention due to their impressive performance

https://doi.org/10.1016/j.neucom.2019.03.067
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.03.067&domain=pdf
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Fig. 1. An example of different HEp-2 specimen images staining patterns, the first row represents the raw images and the second row indicates the corresponding segmen- 

tation masks. (a)–(g) represents Homogeneous, Speckled, Nucleolar, Centromere, Golgi, Nuclear membrane, and Miotic spindle, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

w  

s  

d

2

2

 

s  

s  

t  

F  

h  

h  

g  

B  

n  

I  

t  

p  

t  

m  

a

2

 

g  

s  

d  

l  

a  

V  

m  

t  

n  

w  

a  

D  

f  

w  

s  

w  

B  
in various image processing tasks [9–11] . The fully convolutional

network (FCN) extends the traditional CNN, which is one of the

most representative models [12,13] for segmentation. The main

idea under FCN model is to apply the classification networks

(AlexNet [14] , VGG net [15] , GoogLeNet [16] , and ResNet [17] ) to

the segmentation task by transforming the last classifier layers to

the deconvolutional layers. In fact, the deeper level of network

layer information and fusion can further improve the segmenta-

tion performance. Hence, the full convolution residual network

(FCRN) with a deeper residual network (ResNet) was proposed

[18] . However, when the fully convolutional connection is applied

to the fully convolutional layer in the deep network, the resolution

of the feature map of the output layer will be reduced. This

results in loss of information which is highly undesirable for the

segmentation of medical images. 

In order to tackle this problem, a lightweight neural network

called U-Net was proposed [19] . The U-Net architecture consists

of a contracting path to capture context and a symmetric expand-

ing path that enables precise localization. However, the network is

inefficient to capture the edge information for some HEp-2 spec-

imen patterns. To better express the image information, Isola et

al. explored generative adversarial networks (GANs) in the condi-

tional setting and proposed pix2pix network framework based on

U-Net [20] . This architecture makes conditional GANs suitable for

image-to-image translation tasks, where an input image is fed into

the network and a corresponding output image is generated. With

the adversarial learning, the network can learn rich edge informa-

tion. Nevertheless, the feature information is easily decreased in

the processing of skip connection. To overcome this limitation, the

Dense Deconvolutional Layer (DDL) structure is fetched in this pa-

per. This idea has been proposed in recent years and achieved con-

siderable segmentation performance [21–25] . 

The DDL consists of a series of skip connection layers between

the previous and later layer instead of performing a summation

operation. This architecture also resolves the gradient vanishing

problem effectively. Inspired by the previous works, we propose

a novel end-to-end Deep Supervised Fully Convolutional Network

(DSFCN), which utilizes DDLs without requiring prior knowledge

and post-processing. The improved loss functions are introduced in

the two lateral output layers to optimize the output feature maps

so that the hierarchical supervision (HS) depth is fully exploited.

Our proposed DSFCN framework is able to learn rich hierarchical

features and captures the local and global contextual information

effectively. Due to the perfect performance, the proposed approach

can be regarded as a general technology for image segmentation.

In summary, the main contributions of this paper are three-fold: 

• We propose a novel end-to-end deep learning framework based

on FCN. Due to the DDL structure, the network can learn rich

boundary information for HEp-2 specimen images. 

• An improved HS mechanism is added to the network, which

can optimize the output feature maps. 
• Experimental results demonstrate that the proposed method

achieves the state-of-the-art segmentation performance on the

I3A-2014 dataset. 

The rest of this paper is organized as follows. The related work

s presented in Section 2 . Section 3 introduces the proposed net-

ork framework in detail. The experiment settings and compari-

on results are illustrated in Sections 4 and 5 . Sections 6 and 7 are

edicated to discussions and conclusions, respectively. 

. Related work 

.1. Image segmentation 

We all know that image segmentation is usually the basic re-

earch for other visual tasks, such as visual tracking [26,27] , clas-

ification [28–34] , detection [35–37] and cropping [38] . Recently,

here are many outstanding image segmentation methods [39–41] .

or example, Shen et al. proposed a novel method to optimize the

igher-order energy with appearance entropy by transforming a

igher-order energy function to a lower-order one at a local re-

ion, which is used to solve the image segmentation problem [42] .

ased on the sub-Markov random walk, Dong et al. proposed a

ovel framework for interactive seeded image segmentation [43] .

n addition, Shen et al. presented a new image superpixel segmen-

ation approach by using the density-based spatial clustering of ap-

lications with noise [44] . In terms of medical image segmenta-

ion, Jia et al. proposed an automated coarse-to-fine segmentation

ethod by utilizing a probabilistic atlas constructed for each scan

nd a cohort of trained CNNs for prostate MR studies [45] . 

.2. Full convolutional networks 

Usually, it is necessary for image segmentation [12] and image

eneration [46] algorithms to make the prediction of the size and

pace for the original pictures. However, the stride of convolution

ecreases the size of the input image. As a result, the deconvo-

ution acts as an up-sampling role. In 2015, Long et al. proposed

n FCN for semantic segmentation [12] . This framework based on

GG architecture leverages deconvolution layers instead of soft-

ax layer, which outputs the predicted images the same size as

he original images. Based on ResNet, Wu et al. proposed a new

etwork architecture called FCRN for semantic segmentation [18] ,

hich achieved state-of-the-art segmentation performance. Liu et

l. proposed a collaborative deconvolutional neural network (C-

CNN) to exploit the semantic and geometric properties of images

or image segmentation [47] . In addition, the full convolution net-

orks (FCN) have also been frequently used in the medical image

egmentation tasks. Ronneberger et al. proposed a symmetric net-

ork structure called U-Net for medical images segmentation [19] .

ased on U-Net, the pix2pix with adversarial learning mechanism
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Input prediction

Encoding

Decoding

224x224x3 224x224x2

Deconvolution block

Dense Deconvolution layer

Deep Supervison Skip connection

Deep Supervison

Convolution

Max pooling

ReLU

Element-wise sum

Fig. 2. The architecture of our proposed method. The long-range skip connections are used to incorporate multi-level features between encoding and decoding module to 

void gradient vanishing. We use DDL to refine and fuse different layer feature graphs to obtain a high resolution. The HS scheme is added into the last two output layers of 

a three-layer deconvolution operation to refine the output results. 
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as proposed. Bi et al. proposed a new semi-automated skin le-

ion segmentation method that incorporates FCNs with multi-scale

ntegration [48] . He et al. proposed a novel skin lesion segmenta-

ion network via a very deep dense deconvolution network using

ermoscopic images [49] . 

.3. Hierarchical supervision mechanism 

Deep supervision mechanism is often used to improve the per-

ormance of learning tasks especially segmentation task. For ex-

mple, Wang and Shen proposed a deep model that is trained in

 deep supervision way, where the supervision mechanism is fed

nto the mutil-level layers to provide mutil-level saliency informa-

ion [50] . Fan et al. proposed a deep learning approach for image

egistration by utilizing the difference between images as addi-

ional information to supervise the training [51] . In addition, the

rchitecture employs hierarchical loss layers in the up-sampling

ath of U-Net so that the proposed network can be more con-

traint and convergent. To alleviate the destruction of some cor-

elations within image regions, Wang et al. connected a classifica-

ion layer in each deconvolutional layer that is ahead of up-pooling

ayer and supervised it with pixel-wise ground-truth [52] . With

he hierarchical predictions, the network can use cooperatively un-

ooling and bilinear interpolation for resolution recovery. 

. Methodology 

Our proposed deep supervised full convolution network (DS-

CN) consists of the adaptive convolution unit, DDL, skip connec-

ion unit and HS. The architecture of our proposed model is illus-

rated in Fig. 2 . Similar to FCN, the adaptive convolution unit in

SFCN is used to adjust the weight parameters. We use DDL to

ptimize and fuse the feature maps to generate a higher resolu-

ion image. Thus, DSFCN can sharpen object boundaries in an end-

o-end way. Here, we adopt DDL instead of the original multi-layer

usion since DDL not only restores the size of the original input
ixel, but also can effectively obtain the global and contextual in-

ormation. The captured global features can effectively identify the

hole image, which helps to correctly classify the pixels in the re-

ion of interest. Since there is no direct relationship between the

djacent pixels of the generated output feature maps, DSFCN solves

his issue. 

In the DSFCN framework, we integrate different resolution fea-

ure maps extracted in the down-sampling process through the

epth of VGG-16. The low-level boundary information is generated

sing the pre-trained VGG-16 model, while the advanced seman-

ic information is obtained by the segmentation network. The seg-

entation network restores the size of the feature mappings, then

econstructs the spatial dimension information, and finally obtains

he fine structure of objects. The thinning network combines the

haracteristics of the low layer boundary with the advanced se-

antic information. 

.1. Dense deconvolution layer 

In dense CNN, each layer is directly connected to all the other

ayers in a feed-forward fashion. In the original FCN-8s [12] , the

ulti-resolution features are fused by the summation function,

hich may lead to the loss of the boundary information result-

ng in an unsatisfactory result. In the present study, we tackle this

roblem by adding a skip connection layer between the previous

nd later layer instead of performing a summation. In addition, the

irect link between the intermediate feature mappings increases

he dependencies, which leads to faster convergence for the train-

ng process and also improves the information flow [24] . 

The proposed DDL architecture is presented in Fig. 3 and ex-

lained in details as follows. Let G 1 , G 2 , . . . , G l−1 indicate the con-

ection of the generated feature graphs in the middle layers, G l is

efined as follows 

 l = C ( [ G 1 , G 2 , . . . , G l−1 ] ) . (1) 

here C ( · ) indicates the convolution operation. The dense con-

ection reduces the degree of gradient vanishing, enhances the
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Fig. 3. The architecture of the dense deconvolution layer of the proposed method. The four intermediate feature maps are generated by different convolution operations and 

are fused in the stage of decoding to enrich the information of the final feature map so that a higher resolution graph is obtained. 

Fig. 4. Detail illustration of the proposed hierarchical supervision mechanism. The HS mechanism is added to the last two output. 
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gradient propagation, and reuses features more effectively. To ex-

tract the final feature map, we merge the four intermediate feature

maps together. Supposing that ( x ′ , y ′ ) is the location of the corre-

sponding pixel, s is stride, which is set as 2 in our study, the pixel

value of the final feature graph is calculated as follows 

P 
(
x ′ , y ′ 

)
= P m,n ( x ∗ s + m, y ∗ s + n ) , (2)

m = x ′ mod s, n = y ′ mod s. (3)

DDL is vital in the up-sampling operation as it helps to restore

the high resolution of the original input images. In the decoding

phase, it is useful to restore the detailed low-layer features gen-

erated by the encoding module. Hence, we use DDL to refine and

fuse different layer feature graphs to obtain a higher resolution. 

3.2. Hierarchical supervision layer 

We propose a deep-level supervision mechanism to restore the

characteristics of the shallow layer. Inspired by Lee et al. [53] , the
upervision mechanism is added to the output of the two convo-

ution layers, as shown in Fig. 4 . Furthermore, we try to add deep-

evel supervision mechanism to the output of a three-layer decon-

olution operation to refine edge information. Since there is no di-

ect relationship between the predictive output and the real label,

he performance of the output layer is relatively low. To tackle this

roblem, we conduct deep supervision in the last two output lay-

rs. The loss functions of the branch networks can be expressed as

 B , W = 

∑ 

s 

w s L s ( B, W ) + w m 

L m 

( B, W ) , (4)

 s ( B, W ) = −log 
(

p k 
(
x i, j , t i, j 

))
, (5)

 m 

( B, W ) = 

2 

∑ N 
i 

∑ M 

j x i, j t i, j 
∑ N 

i 

∑ M 

j x 2 
i, j 

+ 

∑ N 
i 

∑ M 

j t 2 
i, j 

(6)

here L ( B, W ) is the loss function of the output of the branch net-

orks; L s ( B, W ) is the loss function of the output value and the

eal value of the main network; L m 

( B, W ) represents the loss layer
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Fig. 5. The comparison results of different data augmented methods. 

Table 1 

Segmentation results of different data augmentation methods with HS and without 

HS. 

No. Method Number of 

instances 

SE (%) JA (%) AC (%) SEG (%) 

1 C 30,240 83.55 78.09 95.72 87.06 

2 CM 60,480 85.73 79.07 95.93 87.69 

3 CMR 241,920 89.06 81.64 96.35 89.35 

4 C + HS 30,240 83.55 78.20 95.84 87.13 

5 CM + HS 60,480 84.85 79.84 96.02 87.93 

6 CMR + HS 241,920 89.96 82.68 96.56 90.10 
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f every pixel categorization. The w s and w m 

are the weights of the

etwork, and p k ( x i, j , t i, j ) indicates the probability value of the final

utput layers of the proposed network. In addition, the loss func-

ions in different layers are multiplied by different weights. 

As shown in Fig. 4 , the deep supervision scheme is added into

he last two output layers of the proposed network. In addition,

he resolution of the feature maps generated by these two layers

s different, which inspires us to set different weights for the loss

unction. In our experiments, the weight α and β are set to 0.5

nd 0.3, respectively. 

. Experiment settings 

.1. Database 

Our experiments are evaluated on the public dataset I3A-2014.

he I3A dataset was first released in the fluorescent image based

ell classification contest organized by ICIP 2013 [54] , and later

sed in the contest organized by ICPR 2014. The dataset records

52 specimens from seven categories: Homogeneous (53), Speck-

ed (52), Nucleolar (50), Centromere (51), Golgi ( 10 ), Nuclear mem-

rane (21), and Mitotic spindle (15). The number in brackets indi-

ates the number of specimen samples for the corresponding type

f cells. For each specimen, four images were captured in differ-

nt locations with a size of 1388 × 1040. In total, 1008 grayscale

pecimen images of the I3A dataset were used in the present

tudy. Our experiments are conducted on MatConvNet toolbox

ritten in MATLAB R2017a using a computer with CPU Intel Xeon

5-2680 @ 2.70 GHz, GPU NVIDIA Quadro K40 0 0, and 128 G of

AM. The stochastic gradient descend (mini-batch size = 20, weight

ecay = 0.0 0 01, momentum = 0.9) is used to optimize the target

unction. We observe that the training process starts to converge

fter 10 epochs. 

.2. Data augmentation 

Although the I3A-2014 dataset comprises of 1008 specimen im-

ges, which are still insufficient to train a deep learning network

odel as smaller dataset can easily lead to overfitting issue. There-

ore, we conduct data augmentation to enrich our dataset by using

irroring (M), cropping (C), and rotation (R) operations. We use

 combination of data enhancement techniques in our experiment

amely: ( 1 ) Cropping (C): each specimen image from the original

ataset is randomly cropped into 30 pieces of 224 × 224, result-

ng in a total of 30,240 generated images. ( 2 ) Crop + Mirror (CM):

ased on the dataset generated by ( 1 ), each image is generated

y mirroring operation, resulting in a dataset of 60,480 images.

 3 ) Crop + Mirror + Rotate (CMR): Each image in ( 2 ) was rotated at

our different angles i.e.0 ◦, 90 ◦, 180 ◦ and 270 ◦. As a result, we ob-

ain a total of 241,920 augmented images. 

.3. Evaluation metrics 

In this paper, we utilize the most commonly used evaluation

riteria to assess our segmentation model, which consists of seg-

entation accuracy (SEG), sensitivity (SE), Jaccard index (JA) and

ccuracy (AC). The SEG is a similarity metric obtained by compar-

ng the prediction results of our model and the ground truth. The

A measures the overlap between the predicted results and ground

ruth and is expressed as their intersection over union. The metrics

or evaluating segmentation results are denoted as 

EG = 

2 × precision × Recall 

precision + Recall 
(7) 

precision = 

T P 

T P + F P 
, Recall = 

T P 

T P + F N 

(8)
A = 

T P 

T P + T N + F P 
(9) 

C = 

T P + T N 

T P + F P + T N + F N 

(10) 

E = 

T N 

F P + T N 

(11) 

here TP, TN, FP, and FN present the number of true positive, true

egative, false positive, and false negative, respectively. 

. Experiment results 

.1. Comparison results of different augmented datasets 

Due to the limitation of the number of instances in I3A-2014

ataset for a deep network, different data augmentation strate-

ies are made to avoid over-fitting in the training process. In ad-

ition, the augmented dataset is beneficial for improving the seg-

entation performance. The proposed method is evaluated on dif-

erent augmented datasets that are described in Section 3.1 , re-

pectively. Fig. 5 shows that the segmentation performance on I3A-

014 dataset for different data augmented methods. In addition,

able 1 summarizes the segmentation results of different augmen-

ation strategies. It can be observed that the larger dataset can re-

ult in a better performance. The reason is that the dataset with

ass images is fed into the deep network, which can provide rich

nformation for the proposed network, even some edge informa-

ion can also be learned. 

.2. Comparison results with and without HS 

To demonstrate the effectiveness of the proposed HS mecha-

ism in improving segmentation accuracy, we also conduct the ex-

eriments with and without HS. The segmentation results are also

isted in Table 1 . From Nos. 3 and 6, we can see that the SEG
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Fig. 6. The comparisons of our method with and without HS. From the top line to the bottom line: the original images, the results without HS and the results with HS. 

From left to right: Homogeneous, Speckled, Nucleolar, Centromere, Golgi, Nuclear membrane, and Mitotic spindle. 

Fig. 7. Segmentation results with and without HS on the augmented I3A-2014 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Segmentation results with and without DDL on the augmented I3A-2014 

dataset. 
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with HS is 0.75% higher than SEG without HS and JA with HS

is 1.04% higher than JA without HS. The results demonstrate the

effectiveness of our model with HS. In addition, Fig. 6 also pro-

vides more intuitive results to demonstrate the effectiveness of our

method with HS, in which the first row indicates the original im-

ages, the second row and the third row represent results without

HS and results with HS respectively (the purple lines indicate the

boundary of segmentation results and the white areas represent

ground-truth.). 

From the results in Fig. 6 , we can see that the segmentation

results with HS are closer to the ground-truth regions. For those

relative complex staining patterns (e.g., Golgi, Nuclear membrane,

and Mitotic spindle), the incorrect segmentation regions with HS

are smaller than that without HS. The main reason is that the HS

mechanism can learn rich hierarchical features and refine coarse

output prediction. With HS, the multi-level and multi-scale fea-

tures can be learned. As a result, the network can integrate the

detailed information of the edge corner of each image. Therefore,

HS has more discriminative features than the network without HS.
n fact, when the layers become deeper, the size and resolution of

he feature maps become smaller, and the receptive field becomes

arger. As a result, the global contextual information can be cap-

ured as well. HS not only optimizes the detailed edges, but also

oosts the segmentation performance globally. 

We also conduct experiments with and without HS, and the

egmentation results are shown in Fig. 7 . It can be seen that our

roposed method improves the performance in terms of JA, SE,

C, and SEG, respectively. This experiment shows that the net-

ork with HS is better than the approach without HS on the aug-

ented I3A-2014 dataset, which improves the effectiveness of our

roposed HS structure. 

.3. Comparison results with and without DDL 

To prove the effectiveness of the DDL structure, we carry out

ome experiments with and without DDL. The experimental re-

ults are shown in Fig. 8 . It can be seen that the SEG with DDL

s higher than that without DDL in terms of JA, SE, AC, and SEG,
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Original images Groundtruth Unet pix2pix FCN-8s Proposed

Homogeneous

Speckled

Nucleolar

Centromere

Golgi

Nuclear Membrane

Mitotic Spindle

Fig. 9. Segmentation results on augmented I3A-2014 dataset. The first column shows examples from each cell category. The corresponding ground truths are presented in 

the second column. The following columns present the results from different frameworks. 
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espectively. The reason is that the dense connection in dense

econvolutional layers can help the model to acquire rich infor-

ation of shallow layers. As a result, the boundary information

an be better extracted by our proposed model, which shows

hat the DDL architecture can improve the semantic segmentation

erformance. 

.4. Comparison results with different staining patterns 

It is known from the clinical practice that the images in the

IF dataset refer to seven different classes of specimen level stain-

ng pattern: Homogeneous, Speckled, Nucleolar, Centromere, Golgi,

uclear Membrane, and Mitotic Spindle. The different staining pat-
erns of different HEp-2 specimen images result in great interclass

ifferences. As shown in Fig. 1 , we can see that cells of the first

lass appear as elliptical compact regions with a bright core and

 sharp contour, while those belonging to the last class present a

ark core enclosed by a very hazy contour. This affects the perfor-

ance of the foreground detection approach significantly. Table 2

hows the average performance of JA, SE, AC, and SEG over all the

mages of different specimens, respectively. 

As shown in Table 2 , we can observe that the best performance

f the proposed architecture is obtained in the first class. This is

lose to our expectation, since the homogeneous class is the stain-

ng pattern, which shows the lowest intensity variations in the cell

ody. 
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Groundtruth

Proposed

Fault

Fig. 10. Comparison results from the proposed and fault network architecture. 

Table 2 

The performance of the proposed method for different staining patterns of the I3A- 

2014 dataset. 

Staining pattern JA (%) SE (%) AC (%) SEG (%) 

Homogeneous 89.10 95.04 97.93 94.15 

Speckled 86.46 93.33 97.57 92.68 

Nucleolar 79.92 88.27 96.12 88.63 

Centromere 84.46 91.16 97.17 91.51 

Golgi 59.15 69.36 90.72 73.67 

Nuclear membrane 81.40 90.16 95.82 89.37 

Mitotic spindle 67.46 75.30 92.47 78.70 

Table 3 

Results of different segmentation algorithms on the augmented I3A-2014 dataset. 

Method JA (%) SE (%) AC (%) SEG (%) 

U-Net [19] 62.10 68.33 92.30 74.80 

Pix2pix [20] 75.94 81.96 95.38 85.85 

FCN-8s [12] 81.63 88.97 96.35 89.38 

DSFCN (ours) 82.68 89.96 96.56 90.10 
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5.5. Comparison with other methods 

In order to further demonstrate the effectiveness of our DSFCN

method, we compare the proposed method with different segmen-

tation methods based on the I3A dataset. Table 3 summarizes the

segmentation results from different approaches. It can be observed

that the accuracy achieved from our method is 0.72% higher than

the best method among comparative methods (e.g. FCN-8s [12] )

in terms of SEG for the augmented I3A-2014 dataset. The reason

is that hierarchical supervised neural network accelerates the op-

timization speed which means the gradient is easy to propagate

back to the previous layers from the later layer. 

Fig. 9 presents segmentation results of different deep learn-

ing frameworks for each cell category of the augmented I3A-2014

dataset. It can also be seen that the segmentation result from the

first class HEp-2 specimen images (e.g., Homogeneous) is better

than other classes. In addition, the segmentation results of each

method in this staining pattern are almost the same (e.g., the ho-

mogeneous class has the lowest intensity variations in the cell

body), which verifies our expectation. It can also be observed that

lots of false segmentation regions were generated in U-Net for the

segmentation result of the Speckled class. By comparing the seg-

mentation result of Centromere class, we can observe that the seg-
entation performance of our proposed method is slightly better

han FCN-8s. 

. Discussions 

As described in the above sections, we present an automated

eep supervised full convolution network for HEp-2 specimen im-

ges segmentation in an end-to-end way. In the following, we will

iscuss the effect of the dataset size and network architecture. 

.1. The effect of the dataset size 

The I3A-2014 dataset has only 1008 HEp-2 specimen images

nd the data sample sizes are small. Hence, a deep framework may

e unsuitable for this task. For this reason, we conduct several data

ugmentation experiments. Thus, the number of different staining

atterns is balanced and the augmented dataset also results in a

etter segmentation performance. From Table 1 , we can see that

nly crop, crop & mirror, and crop & mirror & rotate achieve the

egmentation accuracy of 87.13%, 87.93%, 90.10%, respectively. We

an draw a conclusion that the larger dataset can obtain better

egmentation accuracy. The main reason is that a large amount of

mage data increases the readability of the input image in terms of

osition and direction for the proposed network framework. 

.2. The effect of network depth 

Our proposed DSFCN architecture is based on VGG-16 model,

hich is pre-trained on the PASCAL VOC 2012 dataset. On the basis

f this framework, we leverage DDL that consists of a series of skip

onnection, which tackles the problem of gradient vanishing and

akes the convergence easier. We observed that the network con-

erges almost at the tenth epoch in the training stage. In addition,

he layer of HS is also added to the proposed network architec-

ure, which is useful for improving the segmentation performance

n I3A-2014 dataset. 

However, the deep network does not always perform well. For

xample, in order to enhance the representations and utilization of

eatures, we attempt to add the residual connection in our frame-

ork. Nevertheless, the deeper structure causes the network over-

tting so that the object cannot be segmented from the back-

round exactly. As shown in Fig. 10 , many segmentation results of

he modified deeper network are false. By contrast, our proposed

ramework is quite closer to the ground-truth, which demonstrates

he effectiveness of our proposed method as well. 
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Fig. 11. Failure example of our proposed model. The first row represents the original images and the second row indicates the segmentation results of our method, in which 

the white areas represent ground-truth and the purple lines indicate the boundary of segmentation results. 
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.3. The failure cases 

Although our proposed approach achieves the state-of-the-art

erformance, there are some limitations in our proposed method.

he main limitation of our approach is that the distribution and

llumination of the dataset are uneven and insufficient. As a result,

ur proposed model cannot extract discriminative features for ob-

ect regions, which leads to some failing examples occur, as shown

n Fig. 11 . It can be seen that these failure instances mainly happen

n these images with uneven illumination and blurry boundaries. 

. Conclusion 

In this paper, we propose an automated DSFCN framework for

Ep-2 specimen images segmentation, which is able to tackle the

roblem of localization for classification. The proposed model in-

ludes DDL and HS mechanism. DSFCN is able to learn discrimina-

ive feature representation and effective integration of multi-level

ontextual information. Obviously, our method can automatically

nd accurately segment the region of interest. DSFCN can build a

eature connection on DDL to learn the characteristics of the shal-

ow network and reuse it. By adding the hierarchical supervision

o solve the gradient vanishing problem and enhance the propaga-

ion of multi-level features in the whole network, we improve the

egmentation performance of HEp-2 specimen images. 
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